Approximation-Variance Tradeoffs in Mechanism Design

Ariel D. Procaccia1, David Wajc1, and Hanrui Zhang2

1Carnegie Mellon University, \{arielpro, dwajc\}@cs.cmu.edu
2Tsinghua University, zhang-hr13@mails.tsinghua.edu.cn

Abstract

The design and analysis of randomized approximation algorithms has traditionally focused on the \textit{expected} quality of the algorithm’s solution, while largely overlooking the variance of this solution’s quality — partly because such an algorithm typically gives rise to a deterministic algorithm with the same approximation ratio through derandomization. But in algorithmic mechanism design, there is a known separation between deterministic and randomized \textit{strategyproof} mechanisms, that is, the risk associated with randomization is sometimes inevitable. We are therefore interested in understanding the approximation-variance tradeoff in algorithmic mechanism design. As a case study, we investigate this tradeoff in the paradigmatic facility location problem. When there is just one facility, we observe that the social cost objective is trivial, and derive the optimal tradeoff with respect to the maximum cost objective. When there are multiple facilities, the main challenge is the social cost objective, and we establish a surprising impossibility result: under mild assumptions, no smooth approximation-variance tradeoff exists.
1 Introduction

Expectation-variance analysis has long been viewed as one of the fundamental approaches to reasoning about risk aversion. In the language of modern portfolio theory [21], given two portfolios (distributions over outcomes) with the same expected return, an investor would prefer the one with lower risk (variance); he may prefer a portfolio with higher risk only if that risk is offset by sufficiently higher expected returns. The optimal investment depends on the investor’s individual level of risk aversion, as well as on the optimal tradeoff between expected returns and risk.

Given the ubiquity of expectation-variance analysis in economics and finance, it may seem surprising that research in randomized algorithms measures performance almost exclusively in terms of expectation. In particular, the approximation ratio of randomized algorithms for minimization problems is, by definition, the worst-case (over instances) ratio of the algorithm’s expected cost (where the expectation is taken over the algorithm’s coin flips), and the cost of the optimal solution. This focus on expectation is perhaps best explained by the fact that we do not know whether P = BPP or P ⊊ BPP, that is, as far as we know, it might be the case that all polynomial-time randomized algorithms can be derandomized. In the case of randomized approximation algorithms, derandomization yields a deterministic algorithm with the same approximation ratio. Another explanation is that it is possible to reduce the variance of a randomized algorithm by running it multiple times, and taking the best result.

Naturally, the expectation-centric approach has carried over to algorithmic mechanism design and the study of strategyproof mechanisms for game-theoretic versions of optimization problems, that is, mechanisms such that no player can benefit from misreporting his private information. This can be traced back to the eponymous paper of Nisan and Ronen [24], who study randomized strategyproof approximation mechanisms for a scheduling problem, using the standard (expectation-based) definition of approximation.

However, in contrast to the purely algorithmic setting, there is a known separation between deterministic and randomized strategyproof mechanisms in algorithmic mechanism design. For example, in settings with monetary transfers, Nisan and Ronen already establish that randomized strategyproof scheduling mechanisms provide a better approximation ratio than any strategyproof deterministic mechanism; and Dobzinski and Dughmi [7] do the same for multi-unit auctions. In settings without money, this separation is even more prevalent; it is exhibited, e.g., in facility location [26], approval voting [2], and kidney exchange [3, 5]. Moreover, choosing the best result among multiple executions of a randomized strategyproof mechanism is not generally strategyproof.

To summarize, in the presence of randomization, an analysis of the expectation-variance tradeoff is a prerequisite for optimal decision making under risk aversion; and randomization is provably beneficial (sometimes even indispensable) in algorithmic mechanism design. These observations highlight the importance of developing a broad understanding of expectation-variance tradeoffs in algorithmic mechanism design. Specifically, we focus on strategyproof approximation mechanisms, where minimizing cost (essentially) amounts to minimizing the worst-case approximation ratio. Fixing an optimization problem, our generic question is therefore:

Given α ∈ \(\mathbb{R}^+\), what is the optimal approximation ratio achievable by a strategyproof randomized mechanism whose variance is at most α?

Note that this question has a nontrivial answer when instantiated in any algorithmic mechanism design setting where randomized mechanisms outperform deterministic ones. That is why we view this paper as potentially initiating a new research agenda in algorithmic mechanism design (caveats apply, see §1.3).
1.1 The Facility Location Problem

We explore the foregoing question in the context of the facility location problem. The reason for this choice is twofold. First, facility location is the original and paradigmatic example of approximate mechanism design without money [26]. This agenda focuses on problems where monetary transfers are not allowed, which is why the need for approximation typically stems from strategic considerations (the optimal solution is not strategyproof) rather than computational complexity. The prominence of facility location has motivated many papers [26, 1, 20, 19, 25, 14, 15, 16, 28, 29, 6, 30, 31, 12, 11], and, consequently, at this point we have an excellent technical grasp of the problem (although major questions remain open). We directly leverage results from multiple previous papers [26, 19, 15, 16] to obtain our results. Second, the basic facility location problem is extremely simple. This makes it especially suitable for investigating new ideas in algorithmic mechanism design, because one can easily focus on the novel elements (which, in our case, immediately make the problem quite rich).

On a slightly more technical level, an instance of the facility location problem consists of \(n\) players who are located on the real line; \(x_i\) denotes the location of player \(i\). A mechanism \(f\) takes the vector of player locations \(x \in \mathbb{R}^n\) as input, and outputs a vector of \(k\) facility locations \(y \in \mathbb{R}^k\). The cost of player \(i\) is his distance from the nearest facility, that is, \(\min_{\ell \in [k]} |x_i - y_\ell|\). There are two natural minimization objectives: the utilitarian objective of social cost, which is the sum of individual costs; and Rawlsian objective of maximum cost, which is, obviously, the maximum individual cost.

To understand the need for approximation, note that the optimal solution for the case of \(k = 1\) (a single facility), and the maximum cost objective, is to place the facility at the average of the leftmost and rightmost player locations, that is, at \((\min_i x_i + \max_i x_i)/2\). However, this solution is not strategyproof because, say, the rightmost player can drag the facility towards his true location by reporting a location that is further to the right, thereby decreasing his cost. The approximation ratio of a strategyproof mechanism, therefore, quantifies the solution quality that must inevitably be sacrificed in order to achieve strategyproofness. As discussed above, we wish to reexamine the optimal approximation ratio achievable by (randomized) strategyproof mechanisms, subject to an upper bound on variance.

1.2 Our Results

In §3, we study the case of a single facility. For the social cost objective, placing the facility on the median reported location is strategyproof, optimal, and deterministic (so the variance of the social cost is 0). We focus, therefore, on the maximum cost objective.

We define a family of mechanisms, parameterized by \(\alpha \in [0, 1/2]\), which includes the LEFT-RIGHT-MIDDLE (LRM) Mechanism of Procaccia and Tennenholtz [26] as a special case. Informally, given a location profile \(x \in \mathbb{R}^n\), the \(\text{GENERALIZED-LRM}_\alpha\) Mechanism chooses uniformly at random among four potential facility locations: leftmost player location, rightmost location, and two locations whose distance from the optimal solution depends on \(\alpha\). We prove:

Theorem 3.3 (informally stated). For all \(\alpha \in [0, 1/2]\), \(\text{GENERALIZED-LRM}_\alpha\) is a (group) strategyproof mechanism for the 1-facility location problem. Moreover, on location profile \(x \in \mathbb{R}^n\), the expectation of its maximum cost is \((3/2 + \alpha) \cdot \text{opt}(x)\) (that is, its approximation ratio is \(3/2 + \alpha\)), and the standard deviation of its maximum cost is \((1/2 - \alpha) \cdot \text{opt}(x)\).

Theorem 3.3 is especially satisfying in light of the next theorem — our first major technical result — which implies that \(\text{GENERALIZED-LRM}(\alpha)\) gives the optimal approximation-variance tradeoff for the maximum cost objective.
Theorem 3.4 (informally stated). For any strategyproof mechanism for the 1-facility location problem with the maximum cost objective, given a location profile $x \in \mathbb{R}^n$, if the mechanism’s maximum cost has standard deviation at most $(1/2 - \alpha) \cdot \text{opt}(x)$, then its expected maximum cost is at least $(3/2 + \alpha) \cdot \text{opt}(x)$. In other words, the sum of expectation and standard deviation is at least $2 \cdot \text{opt}(x)$.

In §4, we explore the case of multiple facilities. This time it is the maximum cost objective that is less challenging: We observe that the best known approximation ratio for any number of facilities $k \geq 2$ is given by a randomized mechanism of Fotakis and Tzamos [16], which (miraculously) happens to have zero variance.

Next we consider the social cost objective, and things take a turn for the strange: Our second major result asserts that, in this setting, a “reasonable” approximation-variance tradeoff simply does not exist, even when there are just two facilities.

Theorem 4.1 (very informally stated). For the 2-facility location problem with the social cost objective, there is no family of mechanisms f_θ for every $\theta \in [0,1]$ that satisfies two mild technical conditions, and smoothly interpolates between zero variance and constant approximation ratio, i.e., which satisfies the following properties: (i) f_0 has a constant approximation ratio, (ii) the variance of the social cost decreases monotonically with θ, down to zero variance at f_1, and (iii) f_θ changes continuously with θ.

Importantly, for the case of 2 facilities, deterministic strategyproof mechanisms are severely limited [15], but a randomized strategyproof 4-approximation mechanism is known [19]. Our initial goal was to provide an approximation-variance tradeoff with this mechanism on one end, and a bounded deterministic mechanism on the other, but Theorem 4.1 rules this out. We find the theorem to be surprising, even — dare we say it? — shocking.

1.3 Related Work

We are aware of only a single (unpublished) paper in algorithmic mechanism design that directly studies variance [9], in the context of kidney exchange. In contrast to our paper, it does not investigate the tradeoff between variance and approximation. Rather, the main result is a mechanism whose approximation ratio matches that of a mechanism of Ashlagi et al. [3], but has lower variance.

Bhalgat et al. [4] study multi-unit auctions with risk averse sellers, where risk aversion is modeled as a concave utility function. They design polynomial-time strategyproof mechanisms that approximate the seller’s utility under the best strategyproof mechanism. The results depend on the notion of strategyproofness in question, and whether the buyers are also risk averse; in one case Eso and Futó [10] have previously shown how to achieve the maximum utility. This work is different from ours in many ways, but one fundamental difference is especially important to point out: The goal of Bhalgat et al. [4] is to achieve utility as close as possible to that of the optimal strategyproof mechanism; in principle it is possible to achieve an approximation ratio of 1 by running the optimal mechanism itself (which incorporates the concave utility function of the seller) — the obstacle is computational efficiency. Crucially, there is no tradeoff in their setting. In contrast, in our setting the benchmark is the unconstrained optimum, and the smaller the allowed variance, the worse our approximation becomes; our goal is to quantify this tradeoff. Relatedly, Sundararajan and Yan [27] also endow a risk averse seller with a concave utility function, and seek to simultaneously provide an approximation to the optimal utility of any possible seller, independently of his specific utility function.

Further afield, there is a body of work in auction theory that studies optimal auctions for risk averse buyers [22, 4, 17, 8]. See §5 for a discussion of our problem with risk averse players.
2 Notation and Problem Definition

An input to a k-facility location game consists of a set $[n] = \{1, \ldots, n\}$ of players, with each player i associated with a point x_i on the real line. For a location vector $x \in \mathbb{R}^n$, we are interested in a few special points and distances: $lt(x) \triangleq \min_{i \in [n]} x_i$ is the leftmost location in x; $rt(x) \triangleq \max_{i \in [n]} x_i$ is the rightmost location in x; $\text{diam}(x) \triangleq rt(x) - lt(x)$ is the distance between them; and $\text{mid}(x) = (lt(x) + rt(x))/2$ is the midpoint between them.

On input vector $x \in \mathbb{R}^n$, a randomized mechanism f outputs a distribution over k-tuples of output locations (not necessarily selected from the input locations $\{x_i\}_{i=1}^n$). For $k = 1$ the cost of a location y to player i at location x_i is his distance, $\text{cost}(y, x_i) \triangleq |y - x_i|$. More generally, for $k \geq 1$, the cost of a set of k locations $Y = \{y_1, y_2, \ldots, y_k\}$ to a player i at location x_i is the minimum distance between x_i and Y; that is, $\text{cost}(Y, x_i) \triangleq \min_{y \in Y} \{|y - x_i|\}$. On input x the cost of a mechanism f to player i at x_i is the expected cost to i of the chosen set of locations Y according to the distribution $f(x)$; that is, $\text{cost}(f(x), x_i) \triangleq \mathbb{E}_{Y \sim f(x)}[\text{cost}(Y, x_i)]$.

Players seek to minimize their cost, and will misreport their location if this is likely to decrease their cost. We will therefore study mechanisms that compare favorably with the best set of k locations for the given input and objective (more on this later), while eliciting truthful preferences from the players. This notion of truthfulness is formalized in the following two definitions.

Definition 2.1. We say a mechanism f is strategyproof, or SP for short, if for all $x \in \mathbb{R}^n$, and all $x'_i \in \mathbb{R}$, $\text{cost}(f(x), x_i) \leq \text{cost}(f(x_{-i}, x'_i), x_i)$.

In words, under an SP mechanism, for every location vector x and player i, the (expected) cost suffered by i is minimized when i truthfully reports x_i. The following is a stronger, and more desirable property, disallowing collusion.

Definition 2.2. We say a mechanism f is group strategyproof, or GSP for short, if for all $x \in \mathbb{R}^n$, $S \subseteq [n]$, and $x'_S \in \mathbb{R}^{|S|}$, there exists $i \in S$ such that $\text{cost}(f(x), x_i) \leq \text{cost}(f(x_{-S}, x'_S), x_i)$.

In words, for every location vector x and subset of players S, any manipulation by S cannot make all the players in S strictly better off.

Optimization objectives. Two minimization objectives are of primary interest when considering facility location games, namely that of maximum cost (in a sense maximizing fairness) and that of social cost (maximizing the overall welfare of all players). The maximum cost of a set of locations Y to a set of n players with location vector $x \in \mathbb{R}^n$ is simply the maximum cost over all players $\text{mc}(Y, x) \triangleq \max_{i \in [n]} \text{cost}(Y, x_i)$, whereas the social cost is the sum of the players’ costs, i.e., $\text{sc}(Y, x) \triangleq \sum_{i \in [n]} \text{cost}(Y, x_i)$. The maximum cost and social cost of a randomized mechanism f on input x are the expectation of these values over the distribution given by f, that is, over $Y \sim f(x)$.

Approximation. As noted in Section §1, in some cases the optimal solution is not strategyproof; the notion of worst-case (multiplicative) approximation ratio allows us to quantify to what degree the optimality of the solution is sacrificed to obtain strategyproofness.

Definition 2.3. We say a mechanism f is α-approximate with respect to the maximum/social cost if on any input vector x, its expected maximum/social cost C is at most α times the optimal maximum/social cost, $\text{opt}(x)$. That is, $\mathbb{E}[C] \leq \alpha \cdot \text{opt}(x)$.

3 One Facility: The Optimal Tradeoff

In this section we consider the one-facility game. Let us first briefly discuss the social cost objective. As observed by Procaccia and Tennenholtz [26], selecting the median \(^1\) is an optimal GSP mechanism for this objective. (The proof of optimality and group strategyproofness is left as a very easy exercise for the reader.) As the median is a deterministic mechanism, the variance of its social cost is zero. It follows that the approximation-variance tradeoff is a nonissue in one-facility games with the social cost objective. We therefore focus in this section on the maximum cost objective.

3.1 Upper Bound

Our starting point is the optimal SP mechanism for the maximum cost, without variance constraints: the \textsc{Left-Right-Middle} (LRM) Mechanism of Procaccia and Tennenholtz [26]. This simple mechanism selects \(\text{lt}(x) \) with probability \(1/4 \), \(\text{rt}(x) \) with probability \(1/4 \), and the optimal solution \(\text{mid}(x) \) — whose maximum cost is \(\text{opt}(x) = \text{diam}(x)/2 \) — with probability \(1/2 \) (see Figure 1). The approximation ratio of the mechanism is clearly \(3/2 \): with probability \(1/2 \) it selects one of the extreme locations, which have maximum cost \(\text{diam}(x) = 2 \text{opt}(x) \); and with probability \(1/2 \) it selects the optimal solution. Why is this mechanism SP? In a nutshell, consider a player \(i \in N \); he can only affect the outcome by changing the position of \(\text{lt}(x) \) or \(\text{rt}(x) \). Assume without loss of generality that \(i \) reports a location \(x_i' \) to the left of \(\text{lt}(x) \), such that \(\text{lt}(x) - x_i' = \delta > 0 \). Then the leftmost location moves away from \(x_i \) by exactly \(\delta \), and that location is selected with probability \(1/4 \). On the other hand, the midpoint might move towards \(x_i \), but it moves half as fast, that is, \(i \) might gain at most \(\delta/2 \) with probability \(1/2 \) — and the two terms cancel out. This argument is easily extended to show that LRM is GSP (in fact, the proof of Theorem 3.3 rigorously establishes a more general claim). Furthermore, even if we just impose strategyproofness, no mechanism can give an approximation ratio better than \(3/2 \) for the maximum cost [26].

A first attempt: The \textsc{convex\(_p\)} Mechanism. On a location vector \(x \in \mathbb{R}^n \), the LRM Mechanism has variance \(\text{opt}(x)^2/4 \), or, equivalently, standard deviation \(\text{opt}(x)/2 \). Given a smaller variance “budget”, how would the approximation ratio change? The most natural approach to reducing the variance of the LRM Mechanism is to randomize between it and the optimal deterministic (G)SP mechanism, which gives a 2-approximation for the maximum cost by simply selecting \(\text{lt}(x) \). Specifically, we select \(\text{lt}(x) \) with probability \(1 - p \geq 0 \), and with probability \(p \) follow LRM (see Figure 1). This is a special case of a general mechanism, which randomizes between the optimal deterministic mechanism and the optimal randomized mechanism. We call this mechanism \textsc{convex\(_p\)}, and analyze it in some generality in Appendix A. For the specific problem in question, this mechanism yields the following result.

\textbf{Corollary 3.1} (of Theorem A.2). Let \(X \) be the maximum cost of \textsc{convex\(_p\)} on input \(x \). Then,

\[
\mathbb{E}[X] + \text{std}(X) = \left(2 - \frac{p}{2} + \sqrt{\left(1 - \frac{p}{2}\right) \cdot \frac{p}{2}} \right) \cdot \text{opt}(x).
\]

In particular, if \(p \neq 0,1 \) then \(\mathbb{E}[X] + \text{std}(X) > 2 \cdot \text{opt}(x) \). As we shall see in Section 3.1, this approximation to standard deviation tradeoff is suboptimal.

It is worth noting that another natural approach — modifying LRM by increasing the probability of each of the two extreme points to \(q \in [1/4, 1/2] \), and decreasing the probability of the midpoint to \(1 - 2q \) — turns out to be equivalent to \textsc{convex\(_p\)} for \(p = 4q - 1 \). Indeed, the former mechanism is just a symmetrized version of \textsc{convex\(_p\)}.

\(^1\)Take the left median when the number of players is even.
The optimal mechanism. In retrospect, the extension of LRM that does achieve the optimal approximation-variance tradeoff is no less intuitive than the ones discussed earlier. The idea is to think of \(\text{mid}(x) \), which is selected by LRM with probability \(1/2 \), as two points, each selected with probability \(1/4 \). These two points can then be continuously moved at equal pace towards the extremes (see Figure 1). Formally, we have the following mechanism.

Definition 3.2. The Generalized-LRM\(_{\alpha} \) Mechanism is parameterized by \(\alpha \in [0, 1/2] \); on location vector \(x \), Generalized-LRM\(_{\alpha} \) outputs a point \(y \) chosen uniformly at random from the set \(\{ \text{lt}(x), \text{mid}(x) - \alpha \cdot \text{diam}(x), \text{mid}(x) + \alpha \cdot \text{diam}(x), \text{rt}(x) \} \).

The next theorem, whose proof is relegated to Appendix B, presents the properties satisfied by Generalized-LRM\(_{\alpha} \).

Theorem 3.3. For all \(\alpha \in [0, 1/2] \), Generalized-LRM\(_{\alpha} \) is a GSP mechanism for one-facility games. Moreover, if \(X \) is the random variable corresponding to the maximum cost of the mechanism on input \(x \), then \(\mathbb{E}[X] = (3/2 + \alpha) \cdot \text{opt}(x) \) and \(\text{std}(X) = (1/2 - \alpha) \cdot \text{opt}(x) \).

3.2 Matching Lower Bound

We are now ready to present our main technical result for the single-facility location problem: a lower bound for the expectation-variance tradeoff matching the upper bound of Theorem 3.3.

Theorem 3.4. For all \(\alpha \in [0, 1/2] \), no SP mechanism for one-facility location games which is \((3/2 + \alpha)\)-approximate for maximum cost minimization has standard deviation of maximum cost less than \((1/2 - \alpha) \cdot \text{opt}(x)\) on every location vector \(x \).

In our proof we fix some SP mechanism \(f \). We will consider inputs of the form \(x = (l, r) \), where \(l \leq r \), that is, two-player inputs; this is without loss of generality as the two extreme player locations always define the maximum cost.\(^2\) Throughout the remainder of this section, we denote by \(Y(x) \sim f(x) \) the random variable corresponding to the location of the facility output by the mechanism \(f \) on input \(x \). We write \(Y = Y(x) \), whenever the input \(x \) is clear from context. The following two definitions will prove useful in our proof of Theorem 3.4.

Definition 3.5. Given an instance \(x = (l, r) \) and a “gap” \(t \), the normalized leakage of \((l, r)\) with relaxation parameter \(t \) is

\[
\Lambda(l, r, t) \triangleq \mathbb{E} \left[\left| Y - \frac{l + r}{2} \right| \left| Y \notin (l + t, r - t) \right] \Pr[Y \notin (l + t, r - t)] \cdot \left(\frac{r - l}{2} \right)^{-1} .
\]

Intuitively, \(\Lambda(l, r, t) \) is the contribution of probabilities outside \((l + t, r - t)\) to the expected distance from the facility to \(\text{mid}(x) = \frac{l + r}{2} \), normalized by \(\text{opt}(x) = \frac{r - l}{2} \).

\(^2\)The extension to more than two players is almost immediate, as we can identify more than one player with either extreme location, using Lemma D.2.
Definition 3.6. The left- and right-normalized distance of an instance \((l, r)\) are defined to be

\[
d_L(l, r) \triangleq \mathbb{E}[|Y - l|] \cdot \left(\frac{r - l}{2}\right)^{-1},
\]
\[
d_R(l, r) \triangleq \mathbb{E}[|Y - r|] \cdot \left(\frac{r - l}{2}\right)^{-1}.
\]

By the triangle inequality, \(f\) satisfies \(d_L(l, r) + d_R(l, r) \geq 2\). Moreover, as we may safely assume that \(f\) is at worst 2-approximate, we also have \(d_L(l, r), d_R(l, r) \leq 2\), and so \(d_L(l, r) + d_R(l, r) \leq 4\).

The next result is the core lemma underlying the proof of Theorem 3.4; its rather intricate proof is relegated to Appendix C.1.

Lemma 3.7. For all \(\delta > 0\) and \(t \in (0, 1/2)\) there exists some input \(x = (l, r)\), such that

\[
\Lambda(l, r, t(r - l)) \geq \frac{1}{2} - \delta.
\]

We proceed to inspect the variance of bounded SP approximate single-facility mechanisms for maximum cost minimization. For the remainder of the section we assume \(f\) is an SP mechanism with expected approximation ratio at most \(\frac{3}{2} + \alpha\) for all inputs (with \(\alpha < \frac{1}{2}\), as Theorem 3.4 is trivial for \(\alpha \geq \frac{1}{2}\).)

By Lemma 3.7, for any \((\delta, t)\), there exists an instance \(x = x_{\delta, t}\) satisfying \(\Lambda(x, t) \geq \frac{1}{2} - \delta\). Without loss of generality we shift and scale \(x\) to be \((-1, 1)\). Let \(Y(\delta, t) \sim f(x_{\delta, t})\) denote the output of the mechanism on the instance \(x_{\delta, t}\). We omit the parameters \(\delta\) and \(t\) when the context is clear. Let \(Z = |Y|\). The following lemma, due to Procaccia and Tennenholtz [26], relates \(Z\) to \(X\), the maximum cost of \(f\) on \(x\).

Lemma 3.8 ([26]). Let \(X\) be the maximum cost of \(f\) on input \((-1, 1)\). Then \(X = Z + 1\).

Consequently, the maximum cost \(X\) has variance \(\text{Var}(X) = \text{Var}(Z)\) and so we turn our attention to lower bounding the variance of \(Z\). Moreover, as mechanism \(f\) is \((\frac{3}{2} + \alpha)\)-approximate and clearly \(\text{opt}(-1, 1) = 1\), Lemma 3.8 implies that \(\mathbb{E}[Z] = \frac{1}{2} + \alpha'\) for some \(\alpha' \leq \alpha\). By our choice of \(x = (-1, 1)\) satisfying \(\Lambda(-1, 1, t) \geq \frac{1}{2} - \delta\), we have \(\mathbb{E}[Z | Z \geq 1 - t] \cdot \mathbb{P}[Z \geq 1 - t] \geq \frac{1}{2} - \delta\). In order to lower bound \(\text{Var}(Z)\) we first consider a simpler distribution, defined below.

Definition 3.9. The concentrated version \(Z_c(\delta, t) \triangleq \{(x_c, p_c), (y_c, 1 - p_c)\}\) of \((\delta, t)\) is a two-point distribution, where

\[
y_c = \mathbb{E}[Z | Z \in [0, 1 - t]],
\]
\[
x_c = \mathbb{E}[Z | Z \in [1 - t, \infty]],
\]
\[
p_c = \mathbb{P}[Z \in [1 - t, \infty]].
\]

In words, \(Z_c\) is obtained from \(Z\) by concentrating probabilities in the intervals \([1 - t, \infty)\) and \([0, 1 - t]\) respectively to points \(x_c\) and \(y_c\). Note that concentrating probabilities in both intervals to points yields the same expectation as \(Z\) and can only decrease the variance. That is, \(\mathbb{E}[Z_c] = \mathbb{E}[Z] = \frac{1}{2} + \alpha'\) and \(\text{Var}(Z_c) \leq \text{Var}(Z)\). Moreover, the contribution to \(\mathbb{E}[Z]\) of \(Z\) conditioned on \(Z \not\in [0, 1 - t]\) and the equivalent contribution to \(\mathbb{E}[Z_c]\) are the same. That is,

\[
p_c x_c = \Lambda(-1, 1, t) \geq \frac{1}{2} - \delta.
\]
Revisiting the variance of Z_c, it is easy to see that
\[
\text{Var}(Z_c) = \mathbb{E}[Z_c^2] - \mathbb{E}[Z_c]^2 = p_c x_c^2 + \frac{(\frac{1}{2} + \alpha' - p_c x_c)^2}{1 - p_c} - \left(\frac{1}{2} + \alpha'\right)^2.
\]
Extracting the form of $\text{Var}(Z_c)$, we obtain the following definition.

Definition 3.10. The formal variance $v(p, x, \varepsilon)$ is the expression
\[
v(p, x, \varepsilon) \triangleq px^2 + \frac{(\frac{1}{2} + \varepsilon - px)^2}{1 - p} - \left(\frac{1}{2} + \varepsilon\right)^2,
\]
and the simplified formal variance is $v(p, x) \triangleq v(p, x, \alpha)$.

We aim to bound $v(p, x, \varepsilon)$ and $v(p, x)$ with some constraints on (p, x, ε), instead of bounding $\text{Var}(Z_c)$ or $\text{Var}(Z)$ directly.

Definition 3.11. The feasible domain $\Omega(\delta, t)$ is defined to be
\[
\Omega(\delta, t) \triangleq \left\{(p, x) \mid p \in [0, 1], x \in [1 - t, \infty), \frac{1}{2} - \delta \leq px\right\}
\]
and the relaxed variance bound $V(\delta, t)$ is defined to be
\[
V(\delta, t) \triangleq \inf\{v(p, x) \mid (p, x) \in \Omega(\delta, t)\}.
\]

In words, $\Omega(\delta, t)$ is a domain of simplified formal variance $v(p, x)$ containing all possible concentrated versions of $Z(\delta, t)$, and $V(\delta, t)$ is the tightest lower bound on the simplified formal variance $v(p, x)$ in this domain.

The next lemma establishes that the relaxed variance bound serves as a lower bound for $\text{Var}(Z(\delta, t))$; its first inequality was observed earlier, and the proof of the second inequality appears in Appendix C.2.

Lemma 3.12. For any δ and $t \leq \frac{1}{2} - \alpha$,
\[
\text{Var}(Z(\delta, t)) \geq \text{Var}(Z_c(\delta, t)) \geq V(\delta, t).
\]

By Lemma 3.12, it suffices to derive a lower bound on $V(\delta, t)$. The final lemma helps us do that, by giving a formula for the relaxed variance bound; its proof is relegated to Appendix C.3.

Lemma 3.13. For $t \leq \frac{1}{2} - \alpha$, the relaxed variance bound $V(\delta, t)$ satisfies
\[
V(\delta, t) = v\left(\frac{\frac{1}{2} - \delta}{1 - t}, 1 - t\right).
\]

With Lemma 3.13 in hand, we are finally ready to prove this section’s main result.

Proof of Theorem 3.4. Consider a sequence of (δ, t) values $\{(\frac{1}{i}, \frac{1}{i}) \mid i \in \mathbb{N}\}$. By Lemmas 3.12 and 3.13, for i large enough, i.e., $\frac{1}{i} \leq \frac{1}{2} - \alpha$ (recall that $\alpha < \frac{1}{2}$, so such an i exists), we have
\[
\text{Var}\left(Z\left(\frac{1}{i}, \frac{1}{i}\right)\right) \geq V\left(\frac{1}{i}, \frac{1}{i}\right) = v\left(\frac{\frac{1}{2} - \frac{1}{i}}{1 - \frac{1}{i}}, 1 - \frac{1}{i}\right).
\]
Note that $v\left(\frac{\frac{1}{2} - \tau}{1 - \tau}, 1 - \tau\right)$, a function of τ, is continuous at 0. Therefore
\[
\sup_x \text{Var}(Z(x)) \geq \sup_{\frac{1}{i} \leq \frac{1}{2} - \alpha} \text{Var}\left(Z\left(\frac{1}{i}, \frac{1}{i}\right)\right) \geq \lim_{i \to \infty} v\left(\frac{\frac{1}{2} - \frac{1}{i}}{1 - \frac{1}{i}}, 1 - \frac{1}{i}\right) = v\left(\frac{1}{2}, 1\right) = \left(\frac{1}{2} - \alpha\right)^2,
\]
completing the proof. \qed
4 The Curious Case of Multiple Facilities

Having fully characterized the optimal approximation-variance tradeoff for the case of a single facility in Section 3, we turn our attention to multiple facilities. Our first observation is that now the tables are turned: the maximum cost objective is relatively straightforward (given previous work), whereas the social cost objective turns out to be quite convoluted.

In more detail, the best known SP mechanism for the social cost objective, and any number of facilities $k \geq 2$, is the Equal Cost (EC) Mechanism of Fotakis and Tzamos [16]. The mechanism first covers the player locations with k disjoint intervals $[\alpha_i, \alpha_i + \ell]$, in a way that minimizes the interval length ℓ. Then, with probability $1/2$, the mechanism places a facility at each α_i if i is odd, and at $\alpha_i + \ell$ if i is even; and, with probability $1/2$, the mechanism places a facility at each α_i if i is even, and at $\alpha_i + \ell$ if i is odd.

It is easy to see that the EC Mechanism is 2-approximate. Moreover, amazingly, it is GSP. The crucial observation is that the maximum cost under the EC Mechanism is always exactly ℓ, that is, its maximum cost has zero variance — even though it relies strongly on randomization!

We conclude that, in order to establish any kind of approximation-variance tradeoff for the maximum cost objective, we would need to improve the best known SP approximation mechanism without variance constraints, which is not our focus. In the remainder of this section, therefore, we study the social cost objective. Moreover, we restrict ourselves to the case of two facilities; the reason is twofold. First, very little is known about SP mechanisms for social cost minimization with $k \geq 3$ facilities — not for lack of trying. Second, and more importantly, we establish an impossibility result, that holds even for the case of two facilities.

The best known SP mechanism for social cost minimization in two-facility games is due to Lu et al. [19]. It selects the first facility from the player locations uniformly at random. Then, it selects the second facility also from the player locations with each location selected to be the second facility with probability proportional to its distance from the first selected facility. Lu et al. show that this mechanism is an SP 4-approximate mechanism. The best deterministic approximation is given by the GSP mechanism which simply selects $lt(x)$ and $rt(x)$ — its approximation ratio is $\Theta(n)$.

It is natural to think that it should at least be possible to obtain some (possibly suboptimal) approximation-variance tradeoff by randomizing between the two foregoing mechanisms, via the ConvexMechanism. Strangely enough, the following theorem — our second major technical result — essentially rules this out.

Theorem 4.1. Let $\{f_\theta\}_{\theta \in [0,1]}$ be a family of SP mechanisms for two-facility games that satisfy the following technical assumptions:

1. For any $\theta \in [0,1]$ and location vector x, $f_\theta(x)$ places facilities only on locations in x.
2. For any $\theta \in [0,1]$, if the location vector x contains at least two different locations, then $f_\theta(x)$ always selects two different locations.

Define the random variable $C(f_\theta, x)$ to be the social cost of mechanism f_θ on location vector x. Then the following conditions are mutually exclusive:

3. f_0 is constant-approximate; i.e., there is a constant $\alpha \geq 1$ such that $E[C(f_\theta, x)] \leq \alpha \cdot \opt(x)$.
4. For any location vector $x \in \mathbb{R}^n$, $\text{Var}(C(f_\theta, x))$ decreases monotonically with θ, down to $\text{Var}(C(f_1, x)) = 0$.
5. For any location vector $x \in \mathbb{R}^n$, $E[C(f_\theta, x)]$ is continuous in θ.

We think of Conditions 3–5 as the basic requirements that any “reasonable” tradeoff must satisfy. We also consider the first two assumptions as rather mild. In particular, they are both satisfied by every “useful” SP mechanism for minimizing the social cost in two-facility games, including the best known SP approximation mechanism of Lu et al. [19], all the mechanisms characterized by Miyagawa [23] (he assumes Pareto efficiency, which implies our Assumption 2), and the winner-imposing mechanism of Fotakis and Tzamos [14].

Let us now revisit \(\text{Convex}_p \) in this setting; why is it not a counterexample to the theorem? To be clear, we are thinking of \(f_0 \) as the 4-approximation mechanism of Lu et al. [19], and of \(f_1 \) as the rule that deterministically selects \(\ell(x) \) and \(\ell(x) \) (and has a bounded, though not constant, approximation ratio). It is easy to see that this mechanism satisfies Conditions 1, 2, 3, and 5. Therefore, the theorem implies that \(\text{Convex}_p \) (surprisingly) violates Condition 4: the variance does not decrease monotonically with \(\theta \). This stands in contrast to Section 3.1, where the variance of \(\text{Convex}_p \) (as well as \(\text{Generalized-LRM}_\alpha \)) is monotonic.

The proof of Theorem 4.1 relies on establishing the following, clearly contradictory lemmas.

Lemma 4.2. If \(\{f_\theta\}_{\theta \in [0,1]} \) is a family of SP mechanisms for 2-facility location which satisfies the conditions of Theorem 4.1, then mechanism \(f_1 \) has unbounded approximation ratio for the social cost, (even) when restricted to 3-location instances.

In the proof of the lemma, which can be found in Appendix D.1, we first show that the zero-variance mechanism \(f_1 \) must, in fact, be deterministic. We can therefore leverage a characterization of deterministic bounded SP mechanisms for 2-facility location [15] to establish that \(f_1 \) has unbounded approximation ratio, by proving that it cannot belong to this family. Then we prove the opposite statement in Appendix D.2 — and the theorem follows.

Lemma 4.3. If \(\{f_\theta\}_{\theta \in [0,1]} \) is a family of SP mechanisms for 2-facility location which satisfies the conditions of Theorem 4.1, then mechanism \(f_1 \) has bounded approximation ratio for the social cost, when restricted to 3-location instances.

5 Discussion

We wrap up with a brief discussion of two salient points. First, as noted in §1.3, several previous papers study mechanism design with risk averse players [22, 4, 17, 8]. Can our results be extended to this setting? If we modeled the players’ risk aversion by changing their utility functions, we would change the set of strategyproof mechanisms. Nevertheless, it might be the case that the optimal approximation-variance tradeoff — for the social cost or maximum cost objective — is independent of the players’ individual utility functions. It is somewhat encouraging that the EQUAL Cost Mechanism (see §4) of Fotakis and Tzamos [16] gives the same approximation guarantees (the best known for the maximum cost) for players with any concave cost function. But risk aversion corresponds to a convex cost function (or a concave utility function), for which Fotakis and Tzamos establish negative results.

Second, we would like to reiterate that our paper potentially introduces a new research agenda. Just to give one example, the problem of impartial selection [2, 13, 18] exhibits an easy separation between the approximation ratio achieved by deterministic and randomized SP mechanisms (much like facility location); what is the optimal approximation-variance tradeoff? Even more exciting are general results that apply to a range of problems in mechanism design. And, while our work mainly

3 Unlike the maximum cost objective, for which “useful” mechanisms such as LRM and \(\text{Generalized-LRM}_\alpha \) are known to make use of the freedom to choose facilities outside the player locations.
applies to facility location, it does tease out general insights and questions: Can we build on the ideas behind the convex mechanism (see Appendix A) to obtain “good” (albeit suboptimal, see §3.1), general approximation-variance tradeoffs? Is a “linear” upper bound of the form $c \cdot \text{opt}$ on the sum of expectation and standard deviation (Theorem 3.3) something that we should expect to see more broadly? Can we characterize problems that do not admit approximation-variance tradeoffs satisfying the conditions of Theorem 4.1? These challenges can drive the development of a theory of expectation-variance analysis in algorithmic mechanism design.

Acknowledgments

We thank Shahar Dobzinski for pointing our attention to the work of Dughmi and Peres [8]. Procaccia was partially supported by the NSF under grants IIS-1350598, CCF-1215883, and CCF-1525932, and by a Sloan Research Fellowship.

References

A Convex Combinations of Mechanisms

In this section we analyze a natural and general mechanism to obtain approximate-variance trade-offs.

Definition A.1. Let \mathcal{M}_a and \mathcal{M}_b be two approximate mechanisms for some (common) optimization problem. Then mechanism $\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b)$ is defined as follows: this mechanism emulates \mathcal{M}_a with probability p and emulates \mathcal{M}_b with probability $1 - p$.

Linearity of expectation ensures that if \mathcal{M}_a and \mathcal{M}_b are both SP, then so is the derived mechanism $\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b)$. Moreover, also by linearity of expectation, \mathcal{M}_p obtains an approximation ratio of $p \cdot \alpha_a + (1 - p) \cdot \alpha_b$; that is, its approximation ratio varies linearly with p. Unfortunately, standard deviation does not degrade linearly, as we shall see.

Specifically, our analysis focuses on minimization problems. We show that convex_p yields a super-linear approximation to standard deviation tradeoff. Consequently, for 1-facility games with the maximum cost objective, this mechanism is suboptimal.

Theorem A.2. Let \mathcal{M}_a and \mathcal{M}_b be approximate mechanisms for some minimization problem. Consider an input x which (up to scaling) has optimal value $\text{opt}(x) = 1$. Suppose that on this input these mechanisms’ respective approximation ratios and variances are α_a, α_b and σ_a^2, σ_b^2. If X is the random variable corresponding to the cost of $\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b)$ on input x, then for all $p \in (0, 1)$, if $\alpha_a \neq \alpha_b$ or $\sigma_a \neq \sigma_b$, then

$$E[X] + \text{std}(X) > p \cdot (\alpha_a + \sigma_a) + (1 - p) \cdot (\alpha_b + \sigma_b).$$

Generally, $E[X] = p \cdot \alpha_a + (1 - p) \cdot \alpha_b$ and

$$\text{std}(X) = \sqrt{(p \cdot \sigma_a + (1 - p) \cdot \sigma_b)^2 + p \cdot (1 - p) \cdot ((\alpha_a - \alpha_b)^2 + (\sigma_a^2 - \sigma_b^2))}.$$
or equivalently \(\mathbb{E}[X_a^2] = \alpha_a^2 + \sigma_a^2 \). Likewise, \(\mathbb{E}[X_b^2] = \alpha_b^2 + \sigma_b^2 \). Conditioning on whether or not mechanism \(\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b) \) follows \(\mathcal{M}_a \), we find that

\[
\text{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2
= p \cdot \mathbb{E}[X_a^2] + (1 - p) \cdot \mathbb{E}[X_b^2] - (p \cdot \mathbb{E}[X_a] + (1 - p) \cdot \mathbb{E}[X_b])^2
= p \cdot (\alpha_a^2 + \sigma_a^2) + (1 - p) \cdot (\alpha_b^2 + \sigma_b^2) - (p \cdot \alpha_a + (1 - p) \cdot \alpha_b)^2
= (p \cdot \sigma_a + (1 - p) \cdot \sigma_b)^2 + p \cdot (1 - p) \cdot ((\alpha_a - \alpha_b)^2 + (\sigma_a^2 - \sigma_b^2)).
\]

The term \(p \cdot (1 - p) \cdot ((\alpha_a - \alpha_b)^2 + (\sigma_a^2 - \sigma_b^2)) \) above is strictly greater than zero, provided \(p \neq 0, 1 \) and \(\alpha_a \neq \alpha_b \) or \(\sigma_a \neq \sigma_b \), in which case we have that indeed

\[
\mathbb{E}[X] + \text{std}(X) > p \cdot (\alpha_a + \sigma_a) + (1 - p) \cdot (\alpha_b + \sigma_b).
\]

At this point, we should note a delicate point, namely that \(\alpha_a, \alpha_b, \sigma_a^2 \) and \(\sigma_b^2 \) in Theorem A.2’s statement need not be the worst-case approximation ratios and variances of both mechanisms. In particular, if the “hard inputs” for mechanism \(\mathcal{M}_a \) and \(\mathcal{M}_b \) do not coincide, the above expression parameterized by the worst-case approximation ratios and variances of the mechanisms serves as an upper bound for the approximation-variance tradeoff achieved by Mechanism \(\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b) \). However, for 1-facility location games, the hard instances for the best-known optimal deterministic and randomized mechanisms are one and the same, as the distributions of these mechanisms’ approximation ratios are invariant under shifting and scaling. Therefore, for this problem, we may replace \(\alpha_a, \alpha_b, \sigma_a^2 \) and \(\sigma_b^2 \) with the worst-case approximation ratios and variances. In particular, by Theorem A.2 and our lower bound of Theorem 3.4, we obtain the corollary stated in §3.

Corollary 3.1 (reformulated). For 1-facility maximum cost minimization, using an optimal (2-approximate) deterministic mechanism and the optimal (\(\frac{3}{2} \)-approximate and \(\frac{1}{4} \)-variance) randomized mechanism LRM to play the roles of \(\mathcal{M}_a \) and \(\mathcal{M}_b \) in \(\text{convex}_p(\mathcal{M}_a, \mathcal{M}_b) \) yields a randomized mechanism whose approximation ratio \(X \) satisfies \(\mathbb{E}[X] = 2 - \frac{p}{2} \) and \(\text{std}(X) = \sqrt{\frac{p}{2} \cdot (1 - \frac{p}{2})} \).

This corollary coupled with our upper bound of Theorem 3.3 implies that the approximation-variance tradeoff achieved by Mechanism \(\text{convex}_p \) is suboptimal, as

\[
(2 - \frac{p}{2} + \sqrt{\frac{p}{2} \cdot (1 - \frac{p}{2})}) > 2,
\]

whereas Mechanism \(\text{generalized-LRM}_a \) has approximation ratio \(X \) with \(\mathbb{E}[X] + \text{std}(X) \leq 2 \). For reference, Figure 2 contains a comparison of the standard deviation to expectation curve obtained by \(\text{convex}_p \) compared to the optimal mechanism, \(\text{generalized-LRM}_a \), and the “error term” (their difference) as a function of \(\mathbb{E}[X] \). Note that the standard deviation of \(\text{convex}_p \) decreases monotonically with its expectation, though not linearly.

Figure 2: \(\text{convex}_p \) contrasted with \(\text{generalized-LRM}_a \).

(a) Relation between \(\mathbb{E}[X] \) and \(\text{std}(X) \).

(b) Error term.

14
B Proof of Theorem 3.3

Table 1 summarizes the maximum cost for each possible \(y \) that \(\text{GENERATED-LRM}_\alpha \) outputs (recall that \(\text{opt}(x) = \text{diam}(x)/2 \)). Inspecting this table we find that indeed the expectation satisfies \(\mathbb{E}[X] = \left(\frac{3}{2} + \alpha \right) \cdot \text{opt}(x) \). Given \(\mathbb{E}[X] \) and our table of \(X \) given \(y \), we see that the variance is \(\text{Var}(X) = \left(\frac{1}{2} - \alpha \right)^2 \cdot \text{opt}(x)^2 \), and so \(\text{std}(X) = \left(\frac{1}{2} - \alpha \right) \cdot \text{opt}(x) \), as claimed.

Table 1: Maximum cost of \(\text{GENERATED-LRM}_\alpha \) for its different choices of \(y \).

| \(y \) | \(\arg \max_{x_i \in X} |y - x_i| \) | \(X = \max_{x_i \in X} |y - x_i| \) |
|-----------------|---------------------------------|---------------------------------|
| \(\text{mid}(x) - \alpha \cdot \text{diam}(x) \) | \(\text{rt}(x) \) | \((1 + 2\alpha) \cdot \text{opt}(x) \) |
| \(\text{mid}(x) + \alpha \cdot \text{diam}(x) \) | \(\text{lt}(x) \) | \((1 + 2\alpha) \cdot \text{opt}(x) \) |
| \(\text{lt}(x) \) | \(\text{rt}(x) \) | \(2 \cdot \text{opt}(x) \) |
| \(\text{rt}(x) \) | \(\text{lt}(x) \) | \(2 \cdot \text{opt}(x) \) |

To establish that \(\text{GENERATED-LRM}_\alpha \) is GSP, suppose a group of players \(S \subseteq [n] \) misreport their locations, resulting in a different location vector \(x' \). Denote \(\Delta_L \triangleq \text{lt}(x) - \text{lt}(x') \) and \(\Delta_R \triangleq \text{rt}(x') - \text{rt}(x) \). Note that \(\Delta_L \) and \(\Delta_R \) may be positive for any misreporting group \(S \subseteq [n] \), but for \(\Delta_L \) (or \(\Delta_R \)) to be negative requires the leftmost (respectively, the rightmost) player in \([n]\) be in \(S \). By considering the cases given by the signs of \(\Delta_L \) and \(\Delta_R \), we show that for any values of \(\Delta_L, \Delta_R \), there is some misreporting player \(i \in S \) whose cost does not decrease.

Case 1: \(\Delta_L, \Delta_R \geq 0 \). Let \(z_L \triangleq \text{mid}(x) - \alpha \cdot \text{diam}(x) \) and \(z_R \triangleq \text{mid}(x) + \alpha \cdot \text{diam}(x) \) and let \(z_L', z_R' \) be defined analogously for the misreported location vector \(x' \). Then, for any player location \(x_i \) (clearly \(x_i \in [\text{lt}(x), \text{rt}(x)] \)) we have

\[
\begin{align*}
\text{cost}(f(x), x_i) &= \frac{1}{4} \cdot ((x_i - \text{lt}(x)) + (\text{rt}(x) - x_i)) + |z_L - x_i| + |z_R - x_i|, \\
\text{cost}(f(x'), x_i) &= \frac{1}{4} \cdot ((x_i - \text{lt}(x) + \Delta_L) + (\text{rt}(x) - x_i + \Delta_R)) + |z_L' - x_i| + |z_R' - x_i|.
\end{align*}
\]

But by the triangle inequality, we find that

\[
egin{align*}
|z_L' - x_i| &\geq |z_L - x_i| - \left| \frac{\Delta_R - \Delta_L}{2} - \alpha(\Delta_L + \Delta_R) \right|, \\
|z_R' - x_i| &\geq |z_R - x_i| - \left| \frac{\Delta_R - \Delta_L}{2} + \alpha(\Delta_L + \Delta_R) \right|.
\end{align*}
\]

For \(\alpha \in \{0, \frac{1}{2} \} \), it is easily verified that the implied lower bound on \(|z_L' - x_i| + |z_R' - x_i| \) is at least \(|z_L - x_i| + |z_R - x_i| - (\Delta_L + \Delta_R) \). Furthermore, as this lower bound is linear in \(\alpha \) in the two ranges defined by these values, the same holds for all \(\alpha \in [0, \frac{1}{2}] \). Putting the above together we get \(\text{cost}(f(x'), x_i) \geq \text{cost}(f(x), x_i)) + \frac{1}{4} \cdot (\Delta_L + \Delta_R - (\Delta_L + \Delta_R)) \geq \text{cost}(f(x), x_i) \).

Case 2(a): \(\Delta_L < 0 \) and \(\Delta_R \geq 0 \). As observed above, for \(\Delta_L \) to be negative the leftmost player must be in the deviating set \(S \), but this player cannot gain from this change, and in fact only stands to lose from such a change, as all four points in the support of the mechanism’s output move further away from the leftmost player’s location.

Case 2(b): \(\Delta_L \geq 0 \) and \(\Delta_R < 0 \). This is symmetric to case 2(a) above.

Case 3: \(\Delta_L, \Delta_R < 0 \). In this case the mechanism outputs a location \(y \in [\text{lt}(x'), \text{rt}(x')] \subseteq [\text{lt}(x), \text{rt}(x)] \) with probability one, and by the triangle inequality \(|\text{rt}(x) - y| + |y - \text{lt}(x)| = \text{diam}(x) \).
Thus, by linearity of expectation, \(\text{cost}(f(x'), \text{lt}(x)) + \text{cost}(f(x'), \text{rt}(x)) = \text{diam}(x) \). By the same argument \(\text{cost}(f(x), \text{lt}(x)) + \text{cost}(f(x), \text{rt}(x)) = \text{diam}(x) \). Consequently, either
\[
\text{cost}(f(x'), \text{lt}(x)) \geq \text{cost}(f(x), \text{lt}(x)) \quad \text{or} \quad \text{cost}(f(x'), \text{rt}(x)) \geq \text{cost}(f(x), \text{rt}(x)).
\]
But for \(\Delta_L \) and \(\Delta_R \) to both be negative, both the leftmost and rightmost players must be in the deviating set \(S \), and so some player in \(S \) does not gain from \(S \) misreporting their locations.
\[\square\]

C Proof of Theorem 3.4: Omitted Lemmas

This section contains proofs of lemmas that were omitted from the body of the paper. The lemmas themselves are stated in §3.2.

C.1 Proof of Lemma 3.7

Assume for the sake of contradiction that the lemma does not hold; then (throughout the proof) we can fix some \(\delta > 0 \) and \(0 < t < \frac{1}{2} \) such that for all \((l, r)\),
\[
\Lambda(l, r, t(r - l)) \leq \frac{1}{2} - \delta. \tag{1}
\]

We begin by studying local properties of normalized leakage. The inputs of interest are given in the following definition.

Definition C.1. A gadget \(G \) with parameters \(l, r \) and offset \(x \leq r - l \) is a set of three 2-player instances,
\[
G(l, r, x) \triangleq \{(l, r), (l + x, r), (l, r - x)\}.
\]

Lemma C.2. For a gadget \(G(l, r, x) \) where \(x \leq l(r - l) \),
\[
d_L(l, r) + d_R(l, r) \geq (d_L(l + x, r) + d_R(l, r - x)) \cdot \left(1 + \frac{x}{r - l - 2x}\right) - \frac{x}{r - l - 2x} \cdot (2 - 4\delta).
\]

Proof. Let \(Y \sim f(l, r) \) be the location output by mechanism \(f \) on input \((l, r)\). By strategyproofness of \(f \), the left player in \((l + x, r)\) will not deviate to \((l, r)\), nor will the right player in \((l, r - x)\). Thus,
\[
\frac{r - l - x}{2} \cdot d_L(l + x, r) \leq \mathbb{E} \left[|Y - l - x|\right],
\]
\[
\frac{r - l - x}{2} \cdot d_R(l, r - x) \leq \mathbb{E} \left[|Y - r + x|\right].
\]

Adding the two inequalities we obtain
\[
\frac{r - l - x}{2} \cdot (d_L(l + x, r) + d_R(l, r - x)) \leq \mathbb{E} \left[|Y - l - x| + |Y - r + x|\right]. \tag{2}
\]
We focus on the right-hand side of the above expression, \(\mathbb{E} \left[|Y - l - x| + |Y - r + x|\right] \), conditioned on the events \(I \) and \(O \), corresponding to \(Y \in (l + x, r - x) \) and \(Y \notin (l + x, r - x) \). That is, whether or not \(Y \) is inside or outside the range \((l + x, r - x)\). For the latter case, we rewrite the definition of normalized leakage,
\[
\Lambda(l, r, x) = \mathbb{E} \left[\left|\frac{Y - r + l}{2}\right| \mid O\right] \cdot \Pr[O] \cdot \left(\frac{r - l}{2}\right)^{-1}.
\]
By the triangle inequality, this yields

\[
\mathbb{E} \left[|Y - l - x| + |Y - r + x| \mid O \right] \cdot \Pr[O] = 2 \cdot \mathbb{E} \left[\left| Y - \frac{r + l}{2} \right| \mid O \right] \cdot \Pr[O] = (r - l) \cdot \Lambda(l, r, x).
\] (3)

For the former case (i.e., \(Y \in (l + x, r - x) \)), again by the triangle inequality we have that

\[
\mathbb{E} \left[|Y - l - x| + |Y - r + x| \mid I \right] = r - l - 2x,
\]
and similarly \(\mathbb{E} \left[|Y - l| + |Y - r| \mid I \right] = r - l. \) We therefore have

\[
\mathbb{E} \left[|Y - l - x| + |Y - r + x| \mid I \right] = \frac{r - l - 2x}{r - l} \cdot \mathbb{E} \left[|Y - l| + |Y - r| \mid I \right].
\] (4)

In order to bound the above expectation conditioned on \(I \), we consider the same expectation conditioned on \(I \)'s complement, \(O \). Now, for \(Y \in [l, r] \) we have \(2 \cdot |Y - \frac{l + r}{2}| \leq r - l = |Y - l| + |Y - r| \). On the other hand, for \(Y \notin [l, r] \) we have that \(2 \cdot |Y - \frac{l + r}{2}| = |Y - l| + |Y - r| \). Therefore we find that

\[
2 \cdot \mathbb{E} \left[\left| Y - \frac{l + r}{2} \right| \mid O \right] \leq \mathbb{E} \left[|Y - l| + |Y - r| \mid O \right].
\] (5)

Relating the above expressions to normalized distances, we note that by the law of total expectation,

\[
(d_{L}(l, r) + d_{R}(l, r)) \cdot \frac{r - l}{2} = \sum_{E \in \{I, O\}} \mathbb{E} \left[|Y - l| + |Y - r| \mid E \right] \cdot \Pr[E].
\] (6)

Therefore, using Equations (5) and (6), and again relying on the definition of \(\Lambda(l, r, x) \), we obtain

\[
\mathbb{E} \left[|Y - l| + |Y - r| \mid I \right] \cdot \Pr[I] \leq \left(\frac{r - l}{2} \right) \cdot (d_{L}(l, r) + d_{R}(l, r)) - 2 \cdot \mathbb{E} \left[\left| Y - \frac{r - l}{2} \right| \mid O \right] \cdot \Pr[O]
\]

\[
= \left(\frac{r - l}{2} \right) \cdot (d_{L}(l, r) + d_{R}(l, r) - 2 \cdot \Lambda(l, r, x)).
\] (7)

Concluding the above discussion,

\[
\mathbb{E} \left[|Y - l - x| + |Y - r + x| \right] = \sum_{E \in \{I, O\}} \mathbb{E} \left[|Y - l - x| + |Y - r + x| \mid E \right] \cdot \Pr[E]
\]

\[
\leq (r - l) \cdot \Lambda(l, r, x) + \frac{r - l - 2x}{2} \cdot (d_{L}(l, r) + d_{R}(l, r) - 2 \cdot \Lambda(l, r, x))
\]

\[
= \frac{r - l - 2x}{2} \cdot (d_{L}(l, r) + d_{R}(l, r)) + 2x \cdot \Lambda(l, r, x)
\]

\[
< \frac{r - l - 2x}{2} \cdot (d_{L}(l, r) + d_{R}(l, r)) + 2x \cdot \left(\frac{1}{2} - \delta \right),
\]

where second transition follows from Equations (3), (4), and (7), and the last transition follows from \(\Lambda(l, r, x) \leq \Lambda(l, r, t(r - l)) \),\(^4\) and from Equation (1).

\(^4\)To see why \(\Lambda(l, r, x) \leq \Lambda(l, r, t(r - l)) \) follows from \(x \leq t(r - l) \), recall that \(\Lambda(l, r, x) \) is the contribution of \(Y \) outside the range \((l - x, r + x) \supseteq (l + t(r - l), r - t(r - l)) \) to \(\mathbb{E}[|Y - \frac{l + r}{2}|] \). That is, \(\Lambda(l, r, x) \) corresponds to the contribution of a smaller range of \(Y \) to this expectation than the range which \(\Lambda(l, r, t(r - l)) \) corresponds to.
We let \(A \). For any hierarchy context is clear. We let \((hierarchy with parameters \(x,n,m \) the same “ending points”, the same offsets and different lengths of instances. To be precise, a

Proof. Let \((l_j,r_j)\) denote the \(j \)-th instance in \(A(l,r,x,n) \) when the context is clear.

Definition C.3. An alignment is defined by

\[
A(l,r,x,n) \triangleq \{(l,r),(l+x,r+x),\ldots,(l+(n-1)x,r+(n-1)x)\}.
\]

We let \((l_j,r_j) = (l+(j-1)x,r+(j-1)x)\) denote the \(j \)-th instance in alignment \(A(l,r,x,n) \) when the context is clear.

Definition C.4. The average distance of an alignment \(A = A(l,r,x,n) \) is defined to be

\[
d(A) \triangleq \frac{1}{n} \sum_{j=1}^{n} (d_L(l_j,r_j) + d_R(l_j,r_j)).
\]

As we noted before, for any input \(x = (l,r) \) mechanism \(f \) satisfies \(2 \leq d_L(l,r) + d_R(l,r) \leq 4 \). In particular we have that the average distance for any alignment \(A \) satisfies \(2 \leq d(A) \leq 4 \).

Definition C.5. An alignment hierarchy is a set of alignments with the same “starting points”, the same “ending points”, the same offsets and different lengths of instances. To be precise, a hierarchy with parameters \(x,n,m \) is defined to be

\[
H(x,n,m) \triangleq \{A(0,1+x,x,n),A(0,1+2x,x,n-1),\ldots,A(0,1+mx,x,n-m+1)\}.
\]

We let \(A_i = A(0,1+ix,x,n-i+1) \) denote the \(i \)-th alignment in hierarchy \(H(x,n,m) \) when the context is clear.

Lemma C.6. For any hierarchy \(H(x,n,m) \), for any \(x \leq t(1+x) \) and \(i \in [2,m-1] \),

\[
d(A_i+1) \geq d(A_i) + \frac{4x\delta}{1 + (i-1)x} - \frac{4}{n-i}.
\]

Proof. Let \((l_j^i,r_j^i)\) denote the \(j \)-th instance in \(A_i \), i.e., let \((l_j^i,r_j^i) = ((j-1)x,1+(j+i-1)x)\). Note that for all \(j \in [n-i] \), the three inputs \(\{ (l_j^{i+1},r_j^{i+1}), (l_j^{i+1},r_j^{i+1}), (l_j^i,r_j^i) \} \) form a gadget \(G(l_j^{i+1},r_j^{i+1},x) \) with offset \(x \) and width \(r_j^{i+1} - l_j^{i+1} = 1 + (i-1)x \), so \(x \leq t(1+x) = t(r_j^{i+1} - l_j^{i+1}) \). Hence by Lemma C.2 we have that \(d_L(l_j^{i+1},r_j^{i+1}) + d_R(l_j^{i+1},r_j^{i+1}) \) is lower bounded by

\[
(d_L(l_j^{i+1},r_j^{i+1}) + d_R(l_j^{i+1},r_j^{i+1})) \cdot \left(1 + \frac{x}{1 + (i-1)x} \right) - \frac{x}{1 + (i-1)x} \cdot (2 - 4\delta).
\]

Summing over \(j \), we find that

\[
(n-i) \cdot d(A_{i+1}) = \sum_{j=1}^{n-i} (d_L(l_j^{i+1},r_j^{i+1}) + d_R(l_j^{i+1},r_j^{i+1}))
\]
is lower bounded by
\[
\sum_{j=1}^{n-i} \left((d_L(l_{j+1}^i, r_{j+1}^i) + d_R(l_{j+1}^i, r_{j+1}^i)) \cdot \left(1 + \frac{x}{1 + (i-1)x} \right) - \frac{x}{1 + (i-1)x} \cdot (2 - 4\delta) \right) =
\sum_{j=1}^{n-i} \left((d_L(l_{j+1}^i, r_{j+1}^i) + d_R(l_{j+1}^i, r_{j+1}^i)) \cdot \left(1 + \frac{x}{1 + (i-1)x} \right) \right) - \frac{x(2 - 4\delta)}{1 + (i-1)x} \cdot (n-i).
\]

First, we observe that the distances of the leftmost and rightmost points in \(A_i\), namely \(d_L(l_1^i, r_1^i)\) and \(d_R(l_{n-i+1}^i, r_{n-i+1}^i)\), are not counted in the above expression. Recalling that for any input \((l, r)\) mechanism \(f\) must satisfy \(d_L(l, r), d_R(l, r) \leq 2\), we find that the above expression is lower bounded by
\[
\sum_{j=1}^{n-i+1} \left((d_L(l_j^i, r_j^i) + d_R(l_j^i, r_j^i)) \cdot \left(1 + \frac{x}{1 + (i-1)x} \right) - \frac{x(2 - 4\delta)}{1 + (i-1)x} \cdot (n-i) \right).
\]

Next, recalling that input \((l, r)\) mechanism \(f\) must satisfy \(d_L(l, r) + d_R(l, r) \geq 2\), we find that the above expression is in turn lower bounded by
\[
\sum_{j=1}^{n-i+1} \left((d_L(l_j^i, r_j^i) + d_R(l_j^i, r_j^i)) + \frac{4x\delta}{1 + (i-1)x} \cdot (n-i) - 4 \cdot \left(1 + \frac{x}{1 + (i-1)x} \right) \right). \tag{8}
\]

But, as we have \(x \leq t(1 + x)\) and \(t < 1/2\), this implies that \(\frac{x}{1 + (i-1)x} < \frac{1}{2}\) for all \(i \geq 2\). Therefore (8) is lower bounded by
\[
\sum_{j=1}^{n-i+1} \left((d_L(l_j^i, r_j^i) + d_R(l_j^i, r_j^i)) + \frac{4x\delta}{1 + (i-1)x} \cdot (n-i) - 6. \right.
\]

Finally, dividing through by \(n-i\), we find that indeed
\[
d(A_{i+1}) \geq \frac{1}{n-i} \cdot \left(\sum_{j=1}^{n-i+1} d_L(l_j^i, r_j^i) + d_R(l_j^i, r_j^i) \right) + \frac{4x\delta}{1 + (i-1)x} - \frac{6}{n-i}
\]
\[
\geq \frac{1}{n-i+1} \cdot \left(\sum_{j=1}^{n-i+1} d_L(l_j^i, r_j^i) + d_R(l_j^i, r_j^i) \right) + \frac{4x\delta}{1 + (i-1)x} - \frac{6}{n-i}
\]
\[
= d(A_i) + \frac{4x\delta}{1 + (i-1)x} - \frac{6}{n-i}. \tag{9}
\]

Given Lemma C.6, we are now ready to prove our core lemma, Lemma 3.7.

\textbf{Proof of Lemma 3.7.} We note that for any \(x > 0\) and \(\delta > 0\), the series \(\sum_{i=2}^{\infty} \frac{4x\delta}{1 + (i-1)x}\) diverges. We may therefore fix some \(x > 0\) such that \(x \leq t(1 + x)\), an \(m\) such that
\[
\sum_{i=2}^{m-1} \frac{4x\delta}{1 + (i-1)x} > 3,
\]

19
and n such that
\[\sum_{i=2}^{m-1} \frac{6}{n-i} < 1, \tag{10} \]
and consider the hierarchy $H(x, n, m)$ with these parameters. By Lemma C.6, which held under the assumption that Lemma 3.7 does not hold for the pair (δ, t), we have
\[
d(A_m) - d(A_2) = \sum_{i=2}^{m-1} (d(A_{i+1}) - d(A_i)) \\
\geq \sum_{i=2}^{m-1} \frac{4x\delta}{1 + (i-1)x} - \sum_{i=2}^{m-1} \frac{4}{n-i} \\
> 2,
\]
where the last inequality follows from Equations (9) and (10). That is, $d(A_m) > d(A_2) + 2$. But, as observed before, the average distance of any alignment A must satisfy $4 \geq d(A) \geq 2$, and so we find that $4 \geq d(A_m) > d(A_2) + 2 \geq 4$, a contradiction.

\[\square\]

C.2 Proof of Lemma 3.12

By definition of the formal variance $v(p, x, \epsilon)$ and the constraints on Z_c, we have
\[
\text{Var}(Z_c) \geq \inf \{v(p, x, \epsilon) \mid (p, x) \in \Omega(\delta, t), \epsilon \leq \alpha\}.
\]

Note that for fixed p and x, the formal variance $v(p, x, \epsilon)$ is
\[
v(p, x, \epsilon) = px^2 + \frac{\left(\frac{1}{2} - px\right)^2}{1-p} - \frac{1}{4} + \frac{p}{1-p} \left(\epsilon^2 - (2x-1)\epsilon\right).
\]
which is quadratic in ϵ, with an axis of symmetry at $\epsilon = \left(x - \frac{1}{2}\right)$. As $t \leq \frac{1}{2} - \alpha$, for all $x \geq 1-t$ and $\epsilon \leq \alpha$ the following holds: $x - \frac{1}{2} \geq \frac{1}{2} - t \geq \alpha \geq \epsilon$. By the above we conclude that for any fixed p and $x \geq 1-t$, the function $v(p, x, \epsilon)$ is monotone decreasing in ϵ for all $\epsilon \leq \alpha$, implying that
\[
\text{Var}(Z_c) \geq \inf \{v(p, x, \epsilon) \mid (p, x) \in \Omega(\delta, t), \epsilon \leq \alpha\} \\
= \inf \{v(p, x, \alpha) \mid (p, x) \in \Omega(\delta, t)\} \\
= \inf \{v(p, x) \mid (p, x) \in \Omega(\delta, t)\} \\
= V(\delta, t).
\]

\[\square\]

C.3 Proof of Lemma 3.13

Recall the definition of $V(\delta, t)$,
\[
V(\delta, t) = \inf \{v(p, x) \mid (p, x) \in \Omega(\delta, t)\}.
\]

In order to lower bound the above, we expand $v(p, x)$ and consider it as a function of x.
\[
v(p, x) = px^2 + \frac{\left(\frac{1}{2} + \alpha - px\right)^2}{1-p} - \left(\frac{1}{2} + \alpha\right)^2.
\]
For fixed p and α this expression is quadratic in x, with an axis of symmetry at $x = (\frac{1}{2} + \alpha)$. As $t \leq \frac{1}{2} - \alpha$, for all $x \geq 1 - t$ we have that $x \geq 1 - t \geq \frac{1}{2} + \alpha$ and so for any fixed p and $x \geq 1 - t$, the function $v(p, x)$ is monotone increasing in x and therefore attains its minimum over the set $S_p \triangleq \{ x \mid x \geq 1 - t, \frac{1}{2} - \delta \leq px \}$ at the minimum $x \in S_p$; that is, at $x = \max\{1 - t, (\frac{1}{2} - \delta)/p\}$. We consider the two cases corresponding to $p(1 - t) \geq \frac{1}{2} - \delta$ and $p(1 - t) \leq \frac{1}{2} - \delta$, for which the minimum is attained at $x = 1 - t$ and $x = (\frac{1}{2} - \delta)/p$, respectively.

Case 1: For fixed $p \geq \frac{1}{2 - \delta} 1 - t$, the minimum $x \in S_p$ is $x = 1 - t$ and so the minimum value of $v(p, x)$ over all $x \in S_p$ is $v(p, 1 - t)$, which we expand below.

$$v(p, 1 - t) = p(1 - t)^2 + \left(\frac{1}{2} + \alpha - p(1 - t) \right)^2 - \left(\frac{1}{2} + \alpha \right)^2.$$

Taking the derivative with respect to p, we find that this function is monotone increasing in p,

$$\frac{\partial}{\partial p} \left[p(1 - t)^2 + \left(\frac{1}{2} + \alpha - p(1 - t) \right)^2 - \left(\frac{1}{2} + \alpha \right)^2 \right] = \frac{(t + \alpha - \frac{1}{2})^2}{(1 - p)^2} \geq 0.$$

So, the minimal value of $v(p, x)$ with $p \geq \frac{1}{2 - \delta} 1 - t$ and $x \in S_p$ is precisely $v\left(\frac{1}{2 - \delta} 1 - t, 1 - t \right)$.

Case 2: For fixed $p \leq \frac{1}{2 - \delta} 1 - t$, the minimum $x \in S_p$ is $x = (1/2 - \delta)/p$ and so the minimum value of $v(p, x)$ over all $x \in S_p$ is $v(p, (\frac{1}{2} - \delta)/p)$, which we rewrite as a function of $x = (1/2 - \delta)/p$ as $v((1/2 - \delta)/x, x)$ and expand below.

$$v \left(\frac{1}{2} - \delta \middle/ x, x \right) = \left(\frac{1}{2} - \delta \right) x + \frac{(\alpha + \delta)^2}{1 - \frac{1}{2} \delta} - \left(\frac{1}{2} + \alpha \right)^2.$$

Again, taking the derivative, this time with respect to x, we find that

$$\frac{\partial}{\partial x} \left[\left(\frac{1}{2} - \delta \right) x + \frac{(\alpha + \delta)^2}{1 - \frac{1}{2} \delta} - \left(\frac{1}{2} + \alpha \right)^2 \right] = \frac{\left(\frac{1}{2} - \delta \right) \left(x + 2\delta + \alpha - \frac{1}{2} \right) (x - \frac{1}{2} - \alpha)}{(x - \frac{1}{2} + \delta)^2} \geq 0.$$

That is, this bound is monotone increasing in $x \left(= \frac{1 - \delta}{p} \right)$, or monotone decreasing in p, and therefore the minimal value of $v(p, x)$ with $p \leq \frac{1}{2 - \delta} 1 - t$ and $x \in S_p$ is precisely $v\left(\frac{1}{2 - \delta} 1 - t, 1 - t \right)$.

In summary, we find that indeed,

$$\inf \{ v(p, x) \mid (p, x) \in \Omega(\delta, t) \} = \inf \left\{ \inf \{ v(p, x) \mid x \in S_p \} \mid p \in [0, 1] \right\} \geq v \left(\frac{1}{2} - \delta \left/ 1 - t \right., 1 - t \right).$$

\[\square\]
D Proof of Theorem 4.1: Omitted Lemmas

In this section we prove Theorem 4.1 by proving two contradictory lemmas, which are stated in §4.

Because we are proving an impossibility result, we can focus without loss of generality on 3-location inputs with \(n \) players. We denote such inputs by \(x = \{(x_1,n_1),(x_2,n_2),(x_3,n_3)\} \), indicating that \(n_i \) players are at location \(x_i \), with \(x_1 \leq x_2 \leq x_3 \). We denote the set of inputs of this form by \(\mathcal{I}_3 \). For an instance \(x = \{(x_1,n_1),(x_2,n_2),(x_3,n_3)\} \in \mathcal{I}_3 \), we denote by \(S(x) \) the set of possible values of social cost when facilities are placed on player locations. For example, when \(x_2 - x_1 \leq x_3 - x_2 \), \(S(x) = \{(x_2-x_1)n_1,(x_2-x_1)n_2,(x_3-x_2)n_3\} \), where the three elements correspond to the social costs obtained by putting facilities at \{\(x_2, x_3 \), \{\(x_1, x_3 \)\} and \{\(x_1, x_2 \)\} respectively. Finally, we denote by \(\{(s_i,p_i) | s_i \in S(x), i \in I \subseteq [3]\} \) a distribution of social costs, indicating that cost \(s_i \) is incurred with probability \(p_i \).

D.1 Proof of Lemma 4.2

In this section we establish that for any family of mechanisms \(\{f_\theta\}_{\theta \in [0,1]} \) satisfying the conditions of Theorem 4.1, the mechanism \(f_1 \) must have a bounded approximation ratio for the social cost objective. We start by proving that \(f_1 \) must in fact be deterministic. To do so, we rely on the notion of partial group strategyproofness, or partial GSP for short, introduced by Lu et al. [19].

Definition D.1. A partial group strategyproof (partial GSP) mechanism for facility location problems is a mechanism for which a group of players at the same location cannot benefit from misreporting their locations simultaneously.

As Lu et al. [19] observed, SP implies partial GSP.

Lemma D.2 (Lu et al.). Any SP mechanism for 2-facility location is also partial GSP.

Armed with Lemma D.2, we now move on to stating and proving our characterization of 0-variance SP mechanisms for 2-facility location social cost minimization. That is, we characterize SP mechanisms which always produce the same social cost on a given instance.

Lemma D.3. Restricted to 3-location instances \(\mathcal{I}_3 \), all 0-variance SP mechanisms that place facilities on player locations are deterministic.

Proof. Fix a 0-variance SP mechanism \(f \) that always places facilities on player locations.

For a 3-location instance \(x = \{(x_1,n_1),(x_2,n_2),(x_3,n_3)\} \in \mathcal{I}_3 \) where \(x_1 \leq x_2 \leq x_3 \), let the balance ratio \(r(x) \) of \(x \) be such that

\[
r(x) = \begin{cases}
(x_2-x_1)/(x_3-x_2), & \text{if } x_2-x_1 \leq x_3-x_2 \\
(x_3-x_2)/(x_2-x_1), & \text{otherwise}
\end{cases}
\]

If \(x_2-x_1 \leq x_3-x_2 \), we call \(x_1 \) the near end of \(x \) and \(x_3 \) the far end. Otherwise \(x_3 \) is the near end and \(x_1 \) is the far end. Particularly, when \(x_2-x_1 = x_3-x_2 \), both ends can be the near end or the far end. When talking about a particular instance, we scale the instance and the mechanism itself at the same time retaining all relevant properties, thereby drastically simplifying the discussion. We will show that both far and near end of an instance are both output deterministically. That is, each of these points is output with probability exactly 0 or 1. As \(f \) always chooses exactly two locations and places facilities on player locations, this implies that \(f \) is deterministic.

We first prove that on any instance \(x \in \mathcal{I}_3 \), mechanism \(f \) outputs the far end with probability either 0 or 1. That is (up to rescaling), for any input \(x = \{(-t,a),(0,b),(1,c)\} \) where \(t \leq 1 \), if we...
let $A = -t, B = 0, C = 1$ denote respectively the leftmost, middle and rightmost group of players in the instance x, then f outputs C with probability exactly 0 or 1. Clearly, $S(x) = \{at, bt, c\}$. Suppose f places a facility at C with probability $p \in (0, 1)$; then the cost to players in C is $(1-p)$. Pick a small $\delta > 0$ such that $\delta < 1-p, 1+\delta \neq at$ and $1+\delta \neq bt$. As a 0-variance mechanism, on instance $x' = \{(-t,a),(0,b),(1+c)\}$, f cannot randomize nontrivially between putting a facility at $1+\delta$ or not. If f puts a facility at $1+\delta$ on x', the group C in x will deviate to $1+\delta$ such that their cost will decrease to $\delta < 1-p$. If f does not put a facility at $1+\delta$, players at $1+\delta$ in x' will deviate to 1, decreasing their cost from $1+\delta$ to $p\delta + (1-p)(1+\delta)$. Partial GSP is ruined in both cases. We conclude that f acts deterministically on the far end of any instance. As a corollary, on any instance x whose balance ratio is $r(x) = 1$, mechanism f acts completely deterministically.

We now prove that on any instance, f outputs the near end with probability either 0 or 1. To this end, we first consider the instance $x = \{(-1,a),(0,b),(1,c)\}$. By the previous paragraph, we have that, as $r(x) = 1$, the probability that location -1 is output some $p \in \{0,1\}$. We prove that for all $0 < t \leq 1$, on input $x_t = \{(-t,a),(0,b),(1,c)\}$ mechanism f outputs location $-t$ with probability p_t precisely p, and in particular the probability of the near end being output is 0 or 1. There are two cases to consider, depending on the value of p.

Case 1: $p = 1$. If $p_t > 0$, players at -1 in x will deviate to $-t$ in order to decrease their cost from 1 to $p_t \cdot (1-t) + (1-p_t)$, contradicting partial GSP. Therefore $p_t = 0 = p$.

Case 2: $p = 1$. This case is more intricate. We define a sequence $\{l_i\}_{i=0}^\infty$ where $l_0 = 1$ and $l_{i+1} = (l_i^2 + 2l_i)/(2.5 + 2l_i)$ and prove by induction that for all $k \geq 0$, on any input x_t satisfying $r(x_t) = t \geq l_k$, mechanism f outputs the near end of x_t with probability $p_t = 1 (= p)$. The base case corresponds to $x_t = x$, and so trivially $p_t = p = 1$. For the inductive step, consider some instance x_t with $r(x_t) = t$ satisfying $l_i > t \geq l_{i+1}$, and suppose $p_t < 1$. By the inductive hypothesis, on input $x' = \{(-l_i,a),(0,b),(1,c)\}$ the probability of f outputting $-l_i$ is 1. Therefore, by partial GSP, as group A in x should not benefit from deviating to $-l_i$, we must have $(1-p) \cdot t \leq l_i - t$, or put otherwise

$$p_t \cdot t \geq 2t - l_i. \quad (11)$$

On the other hand, consider the instance $x'' = \{(-t,a),\left(\frac{l_i-t}{1+\delta},b\right), (1,c)\}$. Note that since

$$r(x'') = \frac{l_i - t}{1 - (l_i - t)/(1 + l_i)} = l_i,$$

by the induction hypothesis together with Case 1, f chooses the near and far end of x'' with probability 0 or 1 each, and as f always outputs exactly two facilities, each on a distinct player location, this implies that f performs deterministically on x''. By partial GSP, location $\frac{l_i-t}{1+\delta}$ in x'' must get a facility, or else the players at this location will deviate to 0 in order to decrease their cost from $\frac{l_i-t}{1+\delta} + t$ to at most $\frac{l_i-t}{1+\delta} + p_t \cdot t$. Now, by Case 1, the far end of x_t is chosen by f with probability 0 or 1. As f always outputs two facilities on input x_t, the far end must therefore be chosen with probability precisely 1, else the expected number of output facilities would be strictly less than two. Likewise, group B in x_t must get a facility with probability precisely $1 - p_t$, and so the cost for players in group B on input x_t is precisely $p_t \cdot t$. Consequently, again invoking partial GSP of f, we find that the players at group B in x_t must not benefit from deviating to $\frac{l_i-t}{1+\delta}$ and so we must have

$$p_t \cdot t \leq \frac{l_i - t}{1 + l_i}. \quad (12)$$

23
Combining Equations (11) and (12), we get

\[2t - l_i \leq \frac{l_i - t}{1 + l_i}, \]

which implies that \(t \leq \frac{l_i^2 + 2l_i}{3 + 2l_i} < \frac{l_i^2 + 2l_i}{2.5 + 2l_i} = l_{i+1} \), a contradiction, and so we conclude that \(p_t = 1 \).

We are still to show that \(l_k \) tends to 0 as \(k \) tends to infinity. Note that \(l_k > 0 \) for all \(k \), and

\[\frac{l_{i+1}}{l_i} = \frac{l_i + 2}{2l_i + 2.5} \leq \max \left\{ \frac{l_i}{2l_i}, \frac{2}{2.5} \right\} = \frac{2}{2.5}. \]

Therefore \(0 < l_k \leq \left(\frac{2}{2.5} \right)^k \). Clearly \(\lim_{k \to \infty} l_k = 0 \).

From the above we conclude that for a 3-location instance \(x \in \mathcal{I}_3 \), if \(r(x) > 0 \), \(f \) does not randomize nontrivially on both ends of \(x \). If \(r(x) = 0 \), \(x \) must be a 2-location, or even a 1-location instance, on which there is only one way to put 2 facilities. Altogether we conclude that, \(f \) acts deterministically on both ends of any 3-location instance, or equivalently, \(f \) is deterministic restricted to 3-location instances.

Given Lemma D.3, we may safely assume that \(f_1 \) is a deterministic mechanism whenever restricted to 3-location instances. We will rely on the following characterization of deterministic SP mechanisms for the 2-facility location problem, established by Fotakis and Tzamos [15, Theorem 3.3].

Lemma D.4 (Fotakis and Tzamos). Let \(f \) be any SP mechanism for 2-facility location with a bounded approximation ratio for the social cost. Then, restricted to 3-location instances with \(n \geq 5 \) players, either there exists a unique dictator \(j \in [n] \) such that for all instances \(x \in \mathcal{I}_3 \) a facility is allocated to player \(j \), or for all instances \(x \in \mathcal{I}_3 \) the two facilities are placed on \(l t(x) \) and \(r t(x) \).

Using this characterization and Lemma D.3 we can now prove Lemma 4.2.

Proof of Lemma 4.2. We prove that \(f_1 \) neither chooses the two extremes nor has a dictator, and therefore by Corollary D.4 is not a bounded mechanism. Let \(\alpha \) be the approximation ratio of \(f_0 \). Consider instance \(x = \{(-1,n),(0,n),(1,1)\} \) (i.e., \(n \) players at \(-1\), \(n \) at 0 and 1 at 1) where \(n \geq \max\{3\alpha, 2\} \). Clearly \(S(x) = \{1,n\} \). Let \(C_0 = C(f_0, x) \). Then, by virtue of \(f_0 \) being \(\alpha \)-approximate and by Markov’s Inequality, we have

\[\Pr[C_0 = n] \leq \Pr[C_0 \geq n] \leq \frac{E[C_0]}{n} = \frac{\alpha}{3\alpha} = \frac{1}{3}. \quad (13) \]

If the deterministic mechanism \(f_1 \) puts a facility at 1, thereby producing social cost \(C(f_1, x) = n \), then by continuity of expected social cost, there is a \(0 < \theta' < 1 \) satisfying \(E[C(f_{\theta'}, x)] = \frac{1}{2}(1 + n) \), and therefore \(\Pr[C(f_{\theta'}, x) = n] = \frac{1}{2} \). Pick such a \(\theta' \) and let \(C_{\theta'} = C(f_{\theta'}, x) \). For a random variable \(C \) chosen from the distribution \(\{(1,1-p), (n,p)\} \) we have \(\text{Var}(C) = (n-1)^2 \cdot (p-p^2) \), which is monotone increasing in \(p \) for all \(p \leq \frac{1}{2} \). By Equation (13) we thus obtain

\[\text{Var}(C_0) \leq \text{Var}(\{(1,2/3), (n,1/3)\}) < \text{Var}(\{(1,1/2), (n,1/2)\}) = \text{Var}(C_{\theta'}), \]

and also clearly \(\text{Var}(C_{\theta'}) > 0 = \text{Var}(C_0) \), a contradiction to monotonicity of \(\text{Var}(f_{\theta'}, x) \).

We conclude that, given the location vector \(x \), \(f_1 \) puts facilities at \(-1 \) and 0. In particular, \(f_1 \) neither chooses the two extremes (which are \(-1 \) and 1) nor has a dictator (because any player can be the one located at 1), and hence has an unbounded approximation ratio. \(\square \)
D.2 Proof of Lemma 4.3

In this section we establish that for any family of SP mechanisms \(\{f_\theta\}_{\theta \in [0,1]} \) satisfying the conditions of Theorem 4.1, the mechanism \(f_1 \) must have a bounded approximation ratio for the social cost objective.

Lemma D.5. Let \(\{f_\theta\}_{\theta \in [0,1]} \) be a family of SP mechanisms satisfying the conditions of Theorem 4.1. If \(f_0 \) restricted to \(n \)-player 3-location instances has a bounded approximation ratio \(\alpha = \alpha(n) \), then for any \(n \)-player 3-location input \(x \in \mathcal{I}_3 \), if \(S(x) = \{s_1, s_2, s_3\} \) and \(s_3 > 40\alpha \cdot \text{opt}(x) \), then \(C(f_1, x) \neq s_3 \).

Proof. Without loss of generality let \(s_1 = 1 \). In addition, let \(t > 20 \). Assuming \(s_3 = 2t\alpha > 20\alpha \), we proceed by 2 cases. Throughout the proof we rely on the previously-stated simple observation that for a random variable \(C \) chosen from the distribution \(\{(1,1-p), (z,p)\} \) we have \(\text{Var}(C) = (z-1)^2 \cdot (p-p^2) \), which is monotone increasing in \(p \) for all \(p \leq \frac{1}{2} \) and monotone decreasing in \(p \) for \(p \geq \frac{1}{2} \).

Case 1: \(s_2 > t \cdot \alpha \). We prove that \(C(f_1, x) = s_1 \). Otherwise, \(C(f_1, x) \geq s_2 > \alpha \geq C(f_0, x) \) and by continuity of expected social cost there exists some \(\theta \in (0,1) \) such that \(E[C(f_\theta, x)] = \frac{1}{2}(s_1 + s_2) \). Let \(C_0 = C(f_0, x) \) and \(C_\theta = C(f_\theta, x) \). Since \(f_0 \) is \(\alpha \)-approximate, by Markov’s Inequality we have

\[
\text{Pr}[C_0 = s_1] = 1 - \text{Pr}[C_0 \geq s_2] \geq 1 - \frac{\alpha}{t\alpha} = 1 - \frac{1}{t}.
\]

Therefore, as shifting all the mass of \(C_0 \)’s distribution from cost \(s_2 > t \cdot \alpha > \alpha = E[C_0] \) to cost \(s_3 \) can only serve to increase the variance, and by our observation that \(\text{Var}(\{(1,1-p), (z-p)\}) \) is monotone increasing in \(p \leq \frac{1}{2} \) (e.g., \(\frac{1}{t} \leq \frac{1}{2} \)), we have

\[
\text{Var}(C_0) \leq \text{Var}(\{(s_1,1-1/t), (s_3,1/t)\}) = \text{Var}(\{(1,1-1/t), (2t\alpha,1/t)\}) = (2t\alpha - 1)^2 \cdot (1/t - 1/t^2) \leq 4t^2 \alpha^2 \cdot (1/t) = 4t\alpha^2.
\]

On the other hand, for \(C_\theta \) we have \(E[C_\theta] = \frac{1}{2}(s_1 + s_2) \) and so shifting all the mass from \(s_3 \) to \(s_1 \) and part of the mass from \(s_2 \) to \(s_1 \) (in order to keep the expected cost unchanged) can only decrease the variance,\footnote{This, as the difference between \(s_3 \) and \(E[C_\theta] = \frac{1}{2}(s_1 + s_2) \) is greater than the differences between both other costs and \(\frac{1}{2}(s_1 + s_2) \), which are both equal to \(\frac{1}{2}(s_2 - s_1) \).} we have

\[
\text{Var}(C_\theta) \geq \text{Var}(\{(s_1,1/2), (s_2,1/2)\}) \geq \text{Var}(\{(1,1/2), (t\alpha,1/2)\}) = (t\alpha - 1)^2 \cdot \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{t^2 \alpha^2 - 2t\alpha + 1}{4} > \frac{t^2 \alpha^2 - 2t\alpha}{4}.
\]
But for $t > 20$ this implies that
\[\text{Var}(C_\theta) - \text{Var}(C_0) > 0, \]
contradicting monotonicity of variance. Therefore in this case, $C(f_1, x) = s_1 \neq s_3$.

Case 2: $s_2 \leq t \cdot \alpha$. If $C(f_1, x) = s_3$, then by continuity of expected social cost there exists some $\theta \in (0, 1)$ such that $\mathbb{E}[C(f_\theta, x)] = \frac{1}{2}(s_2 + s_3)$. Let $C_0 = C(f_0, x)$, $C_\theta = C(f_\theta, x)$. Again, by Markov’s Inequality and f_0 being α-approximate, we have
\[\Pr[C_0 = s_3] \leq \Pr[C_0 \geq s_3] \leq \frac{\alpha}{s_3} = \frac{1}{2t}, \]
and so we have, by a similar argument to Case 1, that
\[\text{Var}(C_0) \leq \text{Var}(\{(s_1, 1 - 1/2t), (s_3, 1/2t)\}) \leq 2t\alpha^2. \]
On the other hand,
\[\text{Var}(C_\theta) \geq \text{Var}(\{(s_2, 1/2), (s_3, 1/2)\}) \geq \text{Var}(\{(t\alpha, 1/2), (2t\alpha, 1/2)\}) = t^2\alpha^2 \cdot \text{Var}(\{(0, 1/2), (1, 1/2)\}) = \frac{1}{4}t^2\alpha^2. \]
But as $t > 20 > 8$, we have
\[\text{Var}(C_\theta) - \text{Var}(C_0) = \frac{t\alpha^2}{4}(t - 8) > 0, \]
again contradicting monotonicity of variance. Therefore in this case, too, $C(f_1, x) \neq s_3$.

We conclude that when $s_3 = 2t\alpha > 40\alpha$, we have $C(f_1, x) \neq s_3$. \(\square\)

Lemma D.6. For an n-player 3-location instance x, if $S(x) = \{s_1, s_2, s_3\}$ where $s_1 \leq s_2 \leq s_3$, then $s_2 \leq (n - 2) \cdot s_1 = (n - 2) \cdot \text{opt}(x)$.

Proof. Without loss of generality suppose $x = \{(-1, a), (0, b), (t, c)\}$, where $a + b + c = n$, $a, b, c \geq 1$ and $t \geq 1$, in which case for all $d, e \in \{a, b, c\}$, we have $\frac{d}{e} \leq n - 2$. Clearly $S(x) = \{a, b, ct\}$. Now, regardless of the ordering of $S(x)$, we find that s_1 is at least some e in $\{a, b, c\}$, as $t \geq 1$. Moreover, s_2 is at most some d in $\{a, b, c\}$, as $s_2 \leq s_3$ and either $s_2 \neq ct$ or $s_3 \neq ct$. Consequently we find that
\[\frac{s_2}{s_1} \leq \frac{d}{e} \leq n - 2. \]
\(\square\)

Proof of Lemma 4.3. Let $\alpha = \alpha(n)$ be the approximation ratio of f_0 restricted to n-player 3-location instances. For any 3-location instance x, if $s_3 \leq 40\alpha \cdot \text{opt}(x)$, mechanism f_1 is 40α-approximate. Else, by Lemma D.5 and Lemma D.6, $C(f_1, x) \leq s_2 \leq (n - 2) \cdot s_1$, and so f_1 is $(n - 2)$-approximate. In both cases the approximation ratio of f_1 is bounded by $\max\{(n - 2), 40\alpha\}$ for all x. \(\square\)

26